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What is machine learning?

Supervised learning: regression

“Non-linear” regression, overfitting, and model selection

Supervised learning: classification
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Introduction: digit classification

e The task: write a program that, given a 28x28 grayscale image
of a digit, outputs the string representation
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Digits from MNIST dataset
(http://yann.lecun.com/exdb/mnist/)


http://yann.lecun.com/exdb/mnist/

e One approach: try to write a program by hand that uses your a
priori knowledge of digits to properly classify the images

e Alternative method (machine learning): collect a bunch of
images and their corresponding digits, write a program that uses
this data to build its own method for classifying images

e (More precisely, this is a subset of machine learning called
supervised learning)
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Training Data

(&

(O
(&
(5

’ 2) Deployment

Machine Learning
Prediction = hy ( 2 )
Hypothesis

—  function o
,8> he Predlctlon:h9< q )

,0

)



Training Data

[ 2)

(
(
[

O
4
5

)
)
)

Unsupervised learning

Deployment

Prediction = hy ( 2 )
Hypothesis
—  function o
he Prediction = hyg ( q )

Machine Learning



Outline

Supervised learning: regression



A simple example: predicting electricity use

e What will peak power consumption be in the Pittsburgh area
tomorrow?

e Collect data of past high temperatures and peak demands
High Temperature (F) | Peak Demand (GW)

76.7 1.87
2.7 1.92
715 1.96
86.0 243
90.0 2.69

87.7 2.50
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Several days of peak demand vs. high temperature in Pittsburgh
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e Hypothesize model
Peak demand ~ 6; - (High temperature) + 60

for some numbers 61 and 65

e Then, given a forecast of tomorrow’s high temperature, we can
predict the likely peak demand by plugging it into our model
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e Equivalent to “drawing a line through the data”
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Notation

Input features: z) e R", i=1,....m
—Eg: 2 cRZ= high temperalture for day

Output: y* € R (regression task)
- E.g.: y® € R = {peak demand for day i}

Model Parameters: 6 ¢ R"

Hypothesis function: hy(z) : R" — R
— Hypothesis function: hg(x) returns a prediction of the output y,
e.g. linear regression

hg(x) = Zwlﬂi (= z70, = (z,0))

13



Loss functions

How do we measure how “good” a hypothesis is on the training
data?

Typically done by introducing a loss function

(:RxR Ry

Intuitively, this function outputs a “small” value if hg(z) is
“close” to y, a large value if it is “far” from y

E.g., for regression, squared loss

0 (ho(z),y) = (ho(x) — y)°
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The canonical machine learning problem

e Given a collection of input features and outputs (z(?,y®)),
i=1,...,m, and a hypothesis function hy, find parameters 6
that minimize the sum of losses

L OG0
mlmamlze ;E(he(l“ )y >

e Virtually all (supervised) learning algorithms can be described in
this form, we just need to specify three things:

1. The hypothsis class: hg
2. The loss function: ¢

3. The algorithm for solving the optimization problem (often
approximately)
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Return to power demand forecasting

X Observed data
Linear regression prediction
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e Linear hypothesis class: hg(x) = 270
e Squared loss function: £(hg(y),y) = (he(x) — y)?

e So how do we optimize:

miniemize Zi:;g (hg(:r(i)),y(i)) = minigmize Z (x(i)TH y



Aside: optimization problems

e The problem
. @)y ()
minimize E_l / (he ('), y )

is an example of an optimization problem; we want to find
parameters f that minimize the value of the function

e In more abstract terms, let's consider the problem
minigmize f(0)

where f : R™ — R is a real-valued function

e How do we find a good value of 67
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e An example for one-dimensional
A A

Y

e To find minimum point 8*, we can look at the derivative of the
function f/(#): any location where f'(6) = 0 will be a “flat”
point in the function

e For functions with certain properties (more on this in later

lectures), this will be guaranteed to be a global minimum of the
function
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e The (negative) derivative has another useful property: it points

in a “downhill” direction
A

—f'(0)

Y

e This motivates one of the most common optimization
approaches, known as gradient descent

Repeat: 0 :=0 — af’(0)

where « is some scaling factor (called a step size)
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e For vector § € R™, the analog of the derivative is called the
gradient

v9f<0) cR" = 002

e The general gradient descent algorithm is the same as before,
just using the gradient

Repeat: 6:=60— aVyf(0)
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Return to linear regression

e Let's use these methods to solve our optimization problem
m 2
inimi ORPIIN0
mlnlemlze Z; (3: 06—y )
e After some fairly straightforward calculus
vy (+0"0 - ) ng( Ty )
i=1
_ Z @) (09 _ @
> (r )

e Gradient descent, repeat: 6 —9—042:6 ( it 0 — y(’)>
=1
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e In this case, we can also directly solve for Vyf(6) =0
i @) (T gx _ @) = ¢
W (x y\“) =
> ( )
= (Z :c(i)x@T) 6r =3 ally®
i=1 i=1
m -1 m
— "= (Z x(i)m(i)T> (Z m<i>y<z‘>>
i=1 i=1

e Squared loss is one of the few cases that such directly solutions
are possible, usually need to resort to gradient descent or other
methods
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Alternative loss functions

e Why did we choose the squared loss function

C(ho(z),y) = (ho(x) —y)*?

e Some other alternatives

U(ho(2),y) = [ho(z) — y|
£<h9(w)7y) = maX{O? ’h@(.%') - y| - 6}7 €< R+

Absolute loss:
Deadband loss:

Loss

4 —— Squared Loss
—— Absolute Loss
Deadband Loss
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e For these loss functions, no closed-form expression for 6*, but
gradient descent can still be very effective

e E.g., for absolute loss and linear hypothesis class

Repeat: 0 := 0 — « zm: +Wsign (gg(i)Tg _ y(i))
i=1

e (Technically, absolute loss is not differentiable, so this is a
method called subgradient descent)
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Outline

“Non-linear” regression, overfitting, and model selection
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Overfitting

Though they may seem limited, linear hypothesis classes are
very powerful, since the input features can themselves include
non-linear features of data

A (high temperature for day 4)?
2 e R? = high temperature for day ¢
1

In this case, hy(z) = 276 will be a non-linear function of
“original” data (i.e., predicted peak power is a a non-linear
function of high temperature)

Same solution method as before, gradient descent or (for
squared loss) analytical solution
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Linear regression with second degree polynomial features
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2.8
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Linear regression with fourth degree polynomial features
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Training and validation loss

e Fundamental problem: we are looking for parameters that
optimize
m
inimi (@)Y 4@
minimize Zf(hg(m ), y')
i=1
but what we really care about is loss of prediction on new
examples (2/,y") (also called generalization error)

e Divide data into training set (used to find parameters for a fixed
hypothesis class hy), and validation set (used to choose
hypothesis class)

— (Slightly abusing notation here, we're going to wrap the “degree”
of the input features int the hypothesis class hy)
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e General intuition for training and validation loss

A
—— Training
— Validation

Loss

Model Complexity

e We would like to choose hypothesis class that is at the “sweet
spot” of minimizing validation loss
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Model complexity and regularization

e A number of different ways to control “model complexity”

e An obvious one we have just seen: keep the number of features
(number of parameters) low

e A less obvious method: keep the magnitude of the parameters
small
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e Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in 6
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e We can directly prevent large entries in 6 by penalizing the
magnitude of its entries

o | eads to regularized loss minimization problem

mlnlmlze Z 14 (hg (Z > + A Z 6?

where A\ € R, is a regularization parameter that weights the
relative penalties of the size of 6 and the loss
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Outline

Supervised learning: classification
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Classification problems

e Sometimes we want to predict discrete outputs rather than
continuous

e Is the email spam or not? (YES/NO)

e What digit is in this image? (0/1/2/3/4/5/6/7/8/9)
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Example: classifing household appliances

e Differentiate between two refrigerators using their power
consumption signatures

2500 : ‘ : ‘ ;
Gg o «| O Fridge 1
X Fridge 2

2000

1500

1000}

Duration (seconds)

500}

Power (watts)



Notation

Input features: () e R", i=1,....,m
- E.g.: (9 € R™* = (Duration i, Power i,1)

Output: ) € {—1,41} (binary classification task)
- E.g.: y =Is it fridge 1?

Model Parameters: 6 ¢ R"

Hypothesis function: hy(z) : R — R
— Returns continuous prediction of the output y, where the value

indicates how “confident” we are that the example is —1 or +1;

sign(hg(x)) is the actual binary prediction

— Again, we will focus initially on linear predictors hg(z) = x76
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Loss functions

e Loss function £ : R x {—1,+1} — R

e Do we need a different loss function?
Yy
+1 X X
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Loss functions

e Loss function £ : R x {—1,+1} — R

e Do we need a different loss function?
Yy
+1 X X

— Least squares

-1 X X
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Loss functions

e Loss function £ : R x {—1,+1} — R

e Do we need a different loss function?

(Y
+1 X X X
0 >
— Least squares
—-1+X X

— Perfect classifier
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e The simplest loss (0/1 loss, accuracy): count the number of
mistakes we make

[ 1 ify#sign(hg(x))
U(ho(2),y) = { 0 otherwise
= 1{y - hy(z) < 0}
2
1.5
2 1
05
93 -2 -1 1 2 3
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e Unfortunately, minimizing sum of 0/1 losses leads to a hard
optimization problem

e Because of this, a whole range of alternative “approximations’

to 0/1 loss are used instead

Hinge loss: £(hg(x),y) = max{l —y - hy(z),0}
Squared hinge loss:  £(hg(z),y) = max{l — y - hg(z),0}>
Logistic loss:  £(hg(z),y) = log(1 + e~ ¥7e@))

Exponential loss:  ¢(hg(z),y) = e ¥ ho ()
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Loss
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Support vector machines

e Support vector machine is just regularized hinge loss and linear
prediction (caveat, also common to use “kernel” hypothesis
function, more later)

=1

inimi 1— 4@ . 2079 AS g2
minimize Zmax{ y“ 0} + ; ;
e Gradient descent update, repeat:

:ze—a(—iy@ 91 {y® 0<1}+2)\29>
=1

=1
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Logistic regression

e Logistic regression uses logistic loss
. AOR 2
minimize + Z;log(l +e v 0y 4N z; 0;
1= 1=

e Probabilistic interpretation: p(y® = +1]z(9)) = 1

e Again, gradient descent is a reasonable algorithm (can you
compute an equation for the gradient?)

1+exp{—:r;(i)T9}
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Multi-class classification

e When classification is not binary y € 0,1,...

.k (i.e., classifying

digit images), a common approach is “one-vs-all” method

e Create a new set of y's for the binary classification problem “is

the label of this example equal to j"

Y71 21 otherwise

and solve for the corresponding parameter 67

e For input z, classify according to the hypothesis with the

highest confidence: argmax; hy; ()
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Non-linear classification

e Same exact approach as in the regression case: use non-linear
features of input to capture non-linear decision boundaries
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Classification boundary of support vector machine using
non-linear features 57



Stochastic gradient descent

e One last point (since it underlies a lot of the big data methods
we'll see in this course)

e Most of the losses and gradients we've seen so far, involve
summing over all examples, not practical if there are billions of
them

e A common starting point for “big data” algorithms is stochastic
gradient descent, perform gradient updates for just one example
at a time

0:=0—aVyl (hg(x(i)),y(i)> , i=1,...,m
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