
MLSS 2014 – Introduction
to Machine Learning

Lecture 1

J. Zico Kolter

July 7, 2014

1

Outline

What is machine learning?

Supervised learning: regression

“Non-linear” regression, overfitting, and model selection

Supervised learning: classification

2

Outline

What is machine learning?

Supervised learning: regression

“Non-linear” regression, overfitting, and model selection

Supervised learning: classification

3

Introduction: digit classification

• The task: write a program that, given a 28x28 grayscale image
of a digit, outputs the string representation

Digits from MNIST dataset
(http://yann.lecun.com/exdb/mnist/)

4

http://yann.lecun.com/exdb/mnist/

• One approach: try to write a program by hand that uses your a
priori knowledge of digits to properly classify the images

• Alternative method (machine learning): collect a bunch of
images and their corresponding digits, write a program that uses
this data to build its own method for classifying images

• (More precisely, this is a subset of machine learning called
supervised learning)

5

A supervised learning pipeline

Training Data(
, 2

)
(

, 0

)
(

, 8

)
(

, 5

)
...

Machine Learning

−→
Hypothesis

function
hθ

Deployment

Prediction = hθ

()

Prediction = hθ

()
...

6

A supervised learning pipeline

Training Data(
, 2

)
(

, 0

)
(

, 8

)
(

, 5

)
...

Machine Learning

−→
Hypothesis

function
hθ

Deployment

Prediction = hθ

()

Prediction = hθ

()
...

6

A supervised learning pipeline

Training Data(
, 2

)
(

, 0

)
(

, 8

)
(

, 5

)
...

Machine Learning

−→
Hypothesis

function
hθ

Deployment

Prediction = hθ

()

Prediction = hθ

()
...

6

Unsupervised learning

Training Data()
()
()
()

...

Machine Learning

−→
Hypothesis

function
hθ

Deployment

Prediction = hθ

()

Prediction = hθ

()
...

7

Outline

What is machine learning?

Supervised learning: regression

“Non-linear” regression, overfitting, and model selection

Supervised learning: classification

8

A simple example: predicting electricity use

• What will peak power consumption be in the Pittsburgh area
tomorrow?

• Collect data of past high temperatures and peak demands

High Temperature (F) Peak Demand (GW)
76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69
87.7 2.50

...
...

9

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Several days of peak demand vs. high temperature in Pittsburgh

10

• Hypothesize model

Peak demand ≈ θ1 · (High temperature) + θ2

for some numbers θ1 and θ2

• Then, given a forecast of tomorrow’s high temperature, we can
predict the likely peak demand by plugging it into our model

11

• Equivalent to “drawing a line through the data”

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed data
Linear regression prediction

12

Notation

• Input features: x(i) ∈ Rn, i = 1, . . . ,m

– E.g.: x(i) ∈ R2 =

[
high temperature for day i

1

]

• Output: y(i) ∈ R (regression task)
– E.g.: y(i) ∈ R = {peak demand for day i}

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Hypothesis function: hθ(x) returns a prediction of the output y,

e.g. linear regression

hθ(x) =

n∑
i=1

xiθi
(
≡ xT θ, ≡ 〈x, θ〉

)
13

Loss functions

• How do we measure how “good” a hypothesis is on the training
data?

• Typically done by introducing a loss function

` : R× R→ R+

• Intuitively, this function outputs a “small” value if hθ(x) is
“close” to y, a large value if it is “far” from y

• E.g., for regression, squared loss

` (hθ(x), y) = (hθ(x)− y)2

14

The canonical machine learning problem

• Given a collection of input features and outputs (x(i), y(i)),
i = 1, . . . ,m, and a hypothesis function hθ, find parameters θ
that minimize the sum of losses

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)

• Virtually all (supervised) learning algorithms can be described in
this form, we just need to specify three things:

1. The hypothsis class: hθ

2. The loss function: `

3. The algorithm for solving the optimization problem (often
approximately)

15

Return to power demand forecasting

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)
P

ea
k

H
ou

rly
 D

em
an

d
(G

W
)

Observed data
Linear regression prediction

• Linear hypothesis class: hθ(x) = xT θ

• Squared loss function: `(hθ(y), y) = (hθ(x)− y)2

• So how do we optimize:

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)
≡ minimize

θ

m∑
i=1

(
x(i)

T
θ − y(i)

)2
?

16

Aside: optimization problems

• The problem

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)

is an example of an optimization problem; we want to find
parameters θ that minimize the value of the function

• In more abstract terms, let’s consider the problem

minimize
θ

f(θ)

where f : Rn → R is a real-valued function

• How do we find a good value of θ?

17

• An example for one-dimensional θ

f(θ)

θ

f ′(θ)

θ

0

• To find minimum point θ?, we can look at the derivative of the
function f ′(θ): any location where f ′(θ) = 0 will be a “flat”
point in the function

• For functions with certain properties (more on this in later
lectures), this will be guaranteed to be a global minimum of the
function

18

• The (negative) derivative has another useful property: it points
in a “downhill” direction

f(θ)

θ

−f ′(θ)

• This motivates one of the most common optimization
approaches, known as gradient descent

Repeat: θ := θ − αf ′(θ)

where α is some scaling factor (called a step size)

19

• For vector θ ∈ Rn, the analog of the derivative is called the
gradient

∇θf(θ) ∈ Rn =

∂f(θ)
∂θ1
∂f(θ)
∂θ2
...

∂f(θ)
∂θn

• The general gradient descent algorithm is the same as before,

just using the gradient

Repeat: θ := θ − α∇θf(θ)

20

Return to linear regression

• Let’s use these methods to solve our optimization problem

minimize
θ

m∑
i=1

(
x(i)

T
θ − y(i)

)2
• After some fairly straightforward calculus

∇θ
m∑
i=1

(
x(i)

T
θ − y(i)

)2
=

m∑
i=1

∇θ
(
x(i)

T
θ − y(i)

)2
=

m∑
i=1

x(i)
(
x(i)

T
θ − y(i)

)

• Gradient descent, repeat: θ := θ − α
m∑
i=1

x(i)
(
x(i)

T
θ − y(i)

)
21

• In this case, we can also directly solve for ∇θf(θ) = 0

m∑
i=1

x(i)
(
x(i)

T
θ? − y(i)

)
= 0

=⇒
(

m∑
i=1

x(i)x(i)
T

)
θ? =

m∑
i=1

x(i)y(i)

=⇒ θ? =

(
m∑
i=1

x(i)x(i)
T

)−1(m∑
i=1

x(i)y(i)

)

• Squared loss is one of the few cases that such directly solutions
are possible, usually need to resort to gradient descent or other
methods

22

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed data
Linear regression prediction

23

Alternative loss functions

• Why did we choose the squared loss function

` (hθ(x), y) = (hθ(x)− y)2?

• Some other alternatives

Absolute loss: `(hθ(x), y) = |hθ(x)− y|
Deadband loss: `(hθ(x), y) = max{0, |hθ(x)− y| − ε}, ε ∈ R+

−3 −2 −1 0 1 2 3
0

1

2

3

4

hθ(x
i
) − y

i

Lo
ss

Squared Loss
Absolute Loss
Deadband Loss

24

• For these loss functions, no closed-form expression for θ?, but
gradient descent can still be very effective

• E.g., for absolute loss and linear hypothesis class

Repeat : θ := θ − α
m∑
i=1

x(i)sign
(
x(i)

T
θ − y(i)

)

• (Technically, absolute loss is not differentiable, so this is a
method called subgradient descent)

25

Outline

What is machine learning?

Supervised learning: regression

“Non-linear” regression, overfitting, and model selection

Supervised learning: classification

26

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed data
Linear regression prediction

27

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Several days of peak demand vs. high temperature in Pittsburgh
over all months

28

Overfitting

• Though they may seem limited, linear hypothesis classes are
very powerful, since the input features can themselves include
non-linear features of data

x(i) ∈ R3 =

 (high temperature for day i)2

high temperature for day i
1

• In this case, hθ(x) = xT θ will be a non-linear function of

“original” data (i.e., predicted peak power is a a non-linear
function of high temperature)

• Same solution method as before, gradient descent or (for
squared loss) analytical solution

29

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 2

Linear regression with second degree polynomial features

30

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 4

Linear regression with fourth degree polynomial features

31

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 30

Linear regression with 30th degree polynomial features

32

Training and validation loss

• Fundamental problem: we are looking for parameters that
optimize

minimize
θ

m∑
i=1

`(hθ(x
(i)), y(i))

but what we really care about is loss of prediction on new
examples (x′, y′) (also called generalization error)

• Divide data into training set (used to find parameters for a fixed
hypothesis class hθ), and validation set (used to choose
hypothesis class)

– (Slightly abusing notation here, we’re going to wrap the “degree”
of the input features int the hypothesis class hθ)

33

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set

Training set and validation set

34

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set
d = 4

Training set and validation set, fourth degree polynomial

35

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set
d = 30

Training set and validation set, 30th degree polynomial

36

• General intuition for training and validation loss

Loss

Model Complexity

Training
Validation

• We would like to choose hypothesis class that is at the “sweet
spot” of minimizing validation loss

37

0 5 10 15 20 25 30

10
0

10
5

10
10

Degree of polynomial

Lo
ss

Training
Validation

Training and validation loss on peak demand prediction

38

Model complexity and regularization

• A number of different ways to control “model complexity”

• An obvious one we have just seen: keep the number of features
(number of parameters) low

• A less obvious method: keep the magnitude of the parameters
small

39

• Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in θ

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 30

40

• We can directly prevent large entries in θ by penalizing the
magnitude of its entries

• Leads to regularized loss minimization problem

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)
+ λ

n∑
i=1

θ2i

where λ ∈ R+ is a regularization parameter that weights the
relative penalties of the size of θ and the loss

41

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set
d = 30

Degree 30 polynomial, with λ = 0 (unregularized)

42

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set
d = 30

Degree 30 polynomial, with λ = 1

43

Outline

What is machine learning?

Supervised learning: regression

“Non-linear” regression, overfitting, and model selection

Supervised learning: classification

44

Classification problems

• Sometimes we want to predict discrete outputs rather than
continuous

• Is the email spam or not? (YES/NO)

• What digit is in this image? (0/1/2/3/4/5/6/7/8/9)

45

Example: classifing household appliances

• Differentiate between two refrigerators using their power
consumption signatures

150 160 170 180 190 200 210

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Fridge 1
Fridge 2

46

Notation

• Input features: x(i) ∈ Rn, i = 1, . . . ,m

– E.g.: x(i) ∈ R784 = (Duration i,Power i, 1)

• Output: y(i) ∈ {−1,+1} (binary classification task)

– E.g.: y(i) = Is it fridge 1?

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Returns continuous prediction of the output y, where the value

indicates how “confident” we are that the example is −1 or +1;
sign(hθ(x)) is the actual binary prediction

– Again, we will focus initially on linear predictors hθ(x) = xT θ

47

Loss functions

• Loss function ` : R× {−1,+1} → R+

• Do we need a different loss function?

y

−1

+1

x0

48

Loss functions

• Loss function ` : R× {−1,+1} → R+

• Do we need a different loss function?

y

−1

+1

x

Least squares

0

48

Loss functions

• Loss function ` : R× {−1,+1} → R+

• Do we need a different loss function?

y

−1

+1

x

Least squares
Perfect classifier

0

48

• The simplest loss (0/1 loss, accuracy): count the number of
mistakes we make

`(hθ(x), y) =

{
1 if y 6= sign(hθ(x))
0 otherwise

= 1{y · hθ(x) ≤ 0}

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

y × hθ(x)

Lo
ss

49

• Unfortunately, minimizing sum of 0/1 losses leads to a hard
optimization problem

• Because of this, a whole range of alternative “approximations”
to 0/1 loss are used instead

Hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}
Squared hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}2

Logistic loss: `(hθ(x), y) = log(1 + e−y·hθ(x))

Exponential loss: `(hθ(x), y) = e−y·hθ(x)

50

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

y × hθ(x)

Lo
ss

0−1 Loss
Hinge Loss
Logistic Loss
Exponential Loss

Common loss functions for classification

51

Support vector machines

• Support vector machine is just regularized hinge loss and linear
prediction (caveat, also common to use “kernel” hypothesis
function, more later)

minimize
θ

m∑
i=1

max{1− y(i) · x(i)T θ, 0}+ λ

n∑
i=1

θ2i

• Gradient descent update, repeat:

θ := θ − α
(
−

m∑
i=1

y(i)x(i)1{y(i) · x(i)T θ < 1}+ 2λ

n∑
i=1

θi

)

52

150 160 170 180 190 200 210

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Fridge 1
Fridge 2
Classifier boundary

Classification boundary of support vector machine

53

Logistic regression

• Logistic regression uses logistic loss

minimize
θ

+

m∑
i=1

log(1 + e−y·x
(i)T θ) + λ

n∑
i=1

θ2i

• Probabilistic interpretation: p(y(i) = +1|x(i)) = 1

1+exp{−x(i)T θ}

• Again, gradient descent is a reasonable algorithm (can you
compute an equation for the gradient?)

54

150 160 170 180 190 200 210

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Classification boundary of logistic regression

55

Multi-class classification

• When classification is not binary y ∈ 0, 1, . . . , k (i.e., classifying
digit images), a common approach is “one-vs-all” method

• Create a new set of y’s for the binary classification problem “is
the label of this example equal to j”

ŷ(i) =

{
1 if y(i) = j
−1 otherwise

and solve for the corresponding parameter θj

• For input x, classify according to the hypothesis with the
highest confidence: argmaxj hθj (x)

56

Non-linear classification

• Same exact approach as in the regression case: use non-linear
features of input to capture non-linear decision boundaries

120 140 160 180 200 220 240

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Classification boundary of support vector machine using
non-linear features 57

Stochastic gradient descent

• One last point (since it underlies a lot of the big data methods
we’ll see in this course)

• Most of the losses and gradients we’ve seen so far, involve
summing over all examples, not practical if there are billions of
them

• A common starting point for “big data” algorithms is stochastic
gradient descent, perform gradient updates for just one example
at a time

θ := θ − α∇θ`
(
hθ(x

(i)), y(i)
)
, i = 1, . . . ,m

58

	What is machine learning?
	Supervised learning: regression
	``Non-linear'' regression, overfitting, and model selection
	Supervised learning: classification

