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Introduction: digit classification

• The task: write a program that, given a 28x28 grayscale image
of a digit, outputs the string representation

Digits from MNIST dataset
(http://yann.lecun.com/exdb/mnist/)

4

http://yann.lecun.com/exdb/mnist/


• One approach: try to write a program by hand that uses your a
priori knowledge of digits to properly classify the images

• Alternative method (machine learning): collect a bunch of
images and their corresponding digits, write a program that uses
this data to build its own method for classifying images

• (More precisely, this is a subset of machine learning called
supervised learning)
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Unsupervised learning
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A simple example: predicting electricity use

• What will peak power consumption be in the Pittsburgh area
tomorrow?

• Collect data of past high temperatures and peak demands

High Temperature (F) Peak Demand (GW)
76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69
87.7 2.50

...
...
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• Hypothesize model

Peak demand ≈ θ1 · (High temperature) + θ2

for some numbers θ1 and θ2

• Then, given a forecast of tomorrow’s high temperature, we can
predict the likely peak demand by plugging it into our model
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• Equivalent to “drawing a line through the data”
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Observed data
Linear regression prediction
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Notation

• Input features: x(i) ∈ Rn, i = 1, . . . ,m

– E.g.: x(i) ∈ R2 =

[
high temperature for day i

1

]

• Output: y(i) ∈ R (regression task)
– E.g.: y(i) ∈ R = {peak demand for day i}

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Hypothesis function: hθ(x) returns a prediction of the output y,

e.g. linear regression

hθ(x) =

n∑
i=1

xiθi
(
≡ xT θ, ≡ 〈x, θ〉

)
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Loss functions

• How do we measure how “good” a hypothesis is on the training
data?

• Typically done by introducing a loss function

` : R× R→ R+

• Intuitively, this function outputs a “small” value if hθ(x) is
“close” to y, a large value if it is “far” from y

• E.g., for regression, squared loss

` (hθ(x), y) = (hθ(x)− y)2
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The canonical machine learning problem

• Given a collection of input features and outputs (x(i), y(i)),
i = 1, . . . ,m, and a hypothesis function hθ, find parameters θ
that minimize the sum of losses

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)

• Virtually all (supervised) learning algorithms can be described in
this form, we just need to specify three things:

1. The hypothsis class: hθ

2. The loss function: `

3. The algorithm for solving the optimization problem (often
approximately)

15



Return to power demand forecasting

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)
P

ea
k 

H
ou

rly
 D

em
an

d 
(G

W
)

 

 
Observed data
Linear regression prediction

• Linear hypothesis class: hθ(x) = xT θ

• Squared loss function: `(hθ(y), y) = (hθ(x)− y)2

• So how do we optimize:

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)
≡ minimize

θ

m∑
i=1

(
x(i)

T
θ − y(i)

)2
?
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Aside: optimization problems

• The problem

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)

is an example of an optimization problem; we want to find
parameters θ that minimize the value of the function

• In more abstract terms, let’s consider the problem

minimize
θ

f(θ)

where f : Rn → R is a real-valued function

• How do we find a good value of θ?
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• An example for one-dimensional θ

f(θ)

θ

f ′(θ)

θ

0

• To find minimum point θ?, we can look at the derivative of the
function f ′(θ): any location where f ′(θ) = 0 will be a “flat”
point in the function

• For functions with certain properties (more on this in later
lectures), this will be guaranteed to be a global minimum of the
function
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• The (negative) derivative has another useful property: it points
in a “downhill” direction

f(θ)

θ

−f ′(θ)

• This motivates one of the most common optimization
approaches, known as gradient descent

Repeat: θ := θ − αf ′(θ)

where α is some scaling factor (called a step size)
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• For vector θ ∈ Rn, the analog of the derivative is called the
gradient

∇θf(θ) ∈ Rn =


∂f(θ)
∂θ1
∂f(θ)
∂θ2
...

∂f(θ)
∂θn


• The general gradient descent algorithm is the same as before,

just using the gradient

Repeat: θ := θ − α∇θf(θ)
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Return to linear regression

• Let’s use these methods to solve our optimization problem

minimize
θ

m∑
i=1

(
x(i)

T
θ − y(i)

)2
• After some fairly straightforward calculus

∇θ
m∑
i=1

(
x(i)

T
θ − y(i)

)2
=

m∑
i=1

∇θ
(
x(i)

T
θ − y(i)

)2
=

m∑
i=1

x(i)
(
x(i)

T
θ − y(i)

)

• Gradient descent, repeat: θ := θ − α
m∑
i=1

x(i)
(
x(i)

T
θ − y(i)

)
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• In this case, we can also directly solve for ∇θf(θ) = 0

m∑
i=1

x(i)
(
x(i)

T
θ? − y(i)

)
= 0

=⇒
(

m∑
i=1

x(i)x(i)
T

)
θ? =

m∑
i=1

x(i)y(i)

=⇒ θ? =

(
m∑
i=1

x(i)x(i)
T

)−1( m∑
i=1

x(i)y(i)

)

• Squared loss is one of the few cases that such directly solutions
are possible, usually need to resort to gradient descent or other
methods
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Observed data
Linear regression prediction
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Alternative loss functions

• Why did we choose the squared loss function

` (hθ(x), y) = (hθ(x)− y)2?

• Some other alternatives

Absolute loss: `(hθ(x), y) = |hθ(x)− y|
Deadband loss: `(hθ(x), y) = max{0, |hθ(x)− y| − ε}, ε ∈ R+
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Squared Loss
Absolute Loss
Deadband Loss
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• For these loss functions, no closed-form expression for θ?, but
gradient descent can still be very effective

• E.g., for absolute loss and linear hypothesis class

Repeat : θ := θ − α
m∑
i=1

x(i)sign
(
x(i)

T
θ − y(i)

)

• (Technically, absolute loss is not differentiable, so this is a
method called subgradient descent)
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Overfitting

• Though they may seem limited, linear hypothesis classes are
very powerful, since the input features can themselves include
non-linear features of data

x(i) ∈ R3 =

 (high temperature for day i)2

high temperature for day i
1


• In this case, hθ(x) = xT θ will be a non-linear function of

“original” data (i.e., predicted peak power is a a non-linear
function of high temperature)

• Same solution method as before, gradient descent or (for
squared loss) analytical solution
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Observed Data
d = 2

Linear regression with second degree polynomial features
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Observed Data
d = 4

Linear regression with fourth degree polynomial features
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Observed Data
d = 30

Linear regression with 30th degree polynomial features
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Training and validation loss

• Fundamental problem: we are looking for parameters that
optimize

minimize
θ

m∑
i=1

`(hθ(x
(i)), y(i))

but what we really care about is loss of prediction on new
examples (x′, y′) (also called generalization error)

• Divide data into training set (used to find parameters for a fixed
hypothesis class hθ), and validation set (used to choose
hypothesis class)

– (Slightly abusing notation here, we’re going to wrap the “degree”
of the input features int the hypothesis class hθ)
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Training set
Validation set

Training set and validation set
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Training set
Validation set
d = 4

Training set and validation set, fourth degree polynomial
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Training set
Validation set
d = 30

Training set and validation set, 30th degree polynomial
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• General intuition for training and validation loss

Loss

Model Complexity

Training
Validation

• We would like to choose hypothesis class that is at the “sweet
spot” of minimizing validation loss
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Training
Validation

Training and validation loss on peak demand prediction
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Model complexity and regularization

• A number of different ways to control “model complexity”

• An obvious one we have just seen: keep the number of features
(number of parameters) low

• A less obvious method: keep the magnitude of the parameters
small
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• Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in θ
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Observed Data
d = 30
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• We can directly prevent large entries in θ by penalizing the
magnitude of its entries

• Leads to regularized loss minimization problem

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)
+ λ

n∑
i=1

θ2i

where λ ∈ R+ is a regularization parameter that weights the
relative penalties of the size of θ and the loss
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Training set
Validation set
d = 30

Degree 30 polynomial, with λ = 0 (unregularized)
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Training set
Validation set
d = 30

Degree 30 polynomial, with λ = 1
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Classification problems

• Sometimes we want to predict discrete outputs rather than
continuous

• Is the email spam or not? (YES/NO)

• What digit is in this image? (0/1/2/3/4/5/6/7/8/9)
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Example: classifing household appliances

• Differentiate between two refrigerators using their power
consumption signatures
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Notation

• Input features: x(i) ∈ Rn, i = 1, . . . ,m

– E.g.: x(i) ∈ R784 = (Duration i,Power i, 1)

• Output: y(i) ∈ {−1,+1} (binary classification task)

– E.g.: y(i) = Is it fridge 1?

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Returns continuous prediction of the output y, where the value

indicates how “confident” we are that the example is −1 or +1;
sign(hθ(x)) is the actual binary prediction

– Again, we will focus initially on linear predictors hθ(x) = xT θ
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Loss functions

• Loss function ` : R× {−1,+1} → R+

• Do we need a different loss function?

y

−1

+1

x0
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Loss functions
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• The simplest loss (0/1 loss, accuracy): count the number of
mistakes we make

`(hθ(x), y) =

{
1 if y 6= sign(hθ(x))
0 otherwise

= 1{y · hθ(x) ≤ 0}
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• Unfortunately, minimizing sum of 0/1 losses leads to a hard
optimization problem

• Because of this, a whole range of alternative “approximations”
to 0/1 loss are used instead

Hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}
Squared hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}2

Logistic loss: `(hθ(x), y) = log(1 + e−y·hθ(x))

Exponential loss: `(hθ(x), y) = e−y·hθ(x)
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Common loss functions for classification
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Support vector machines

• Support vector machine is just regularized hinge loss and linear
prediction (caveat, also common to use “kernel” hypothesis
function, more later)

minimize
θ

m∑
i=1

max{1− y(i) · x(i)T θ, 0}+ λ

n∑
i=1

θ2i

• Gradient descent update, repeat:

θ := θ − α
(
−

m∑
i=1

y(i)x(i)1{y(i) · x(i)T θ < 1}+ 2λ

n∑
i=1

θi

)
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Logistic regression

• Logistic regression uses logistic loss

minimize
θ

+

m∑
i=1

log(1 + e−y·x
(i)T θ) + λ

n∑
i=1

θ2i

• Probabilistic interpretation: p(y(i) = +1|x(i)) = 1

1+exp{−x(i)T θ}

• Again, gradient descent is a reasonable algorithm (can you
compute an equation for the gradient?)
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Multi-class classification

• When classification is not binary y ∈ 0, 1, . . . , k (i.e., classifying
digit images), a common approach is “one-vs-all” method

• Create a new set of y’s for the binary classification problem “is
the label of this example equal to j”

ŷ(i) =

{
1 if y(i) = j
−1 otherwise

and solve for the corresponding parameter θj

• For input x, classify according to the hypothesis with the
highest confidence: argmaxj hθj (x)
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Non-linear classification

• Same exact approach as in the regression case: use non-linear
features of input to capture non-linear decision boundaries
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Stochastic gradient descent

• One last point (since it underlies a lot of the big data methods
we’ll see in this course)

• Most of the losses and gradients we’ve seen so far, involve
summing over all examples, not practical if there are billions of
them

• A common starting point for “big data” algorithms is stochastic
gradient descent, perform gradient updates for just one example
at a time

θ := θ − α∇θ`
(
hθ(x

(i)), y(i)
)
, i = 1, . . . ,m
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